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We consider both experimentally and analytically the transient oscillatory process that arises when a rapid
change in voltage is applied to a BaxSr1−xTiO3 ferroelectric thin film deposited on an Mg0 substrate. High
frequency ��108 rad /s� polarization oscillations are observed in the ferroelectric sample. These can be un-
derstood using a simple field-polarization model. In particular, we obtain analytic expressions for the oscilla-
tion frequency and the decay time of the polarization fluctuation in terms of the material parameters. These
estimations agree well with the experimental results.
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I. INTRODUCTION

Unique intrinsic properties make ferroelectric materials
attractive both for fundamental research and applications in
devices using electro-optical, piezoelectric, and other effects.
Bulk ferroelectric materials, particularly those based on
barium-strontium titanate BaxSr1−xTiO3 �BST� compounds1,2

are attractive for high-power applications because of their
high dielectric permittivity and small losses. Ferroelectric-
based devices include ultrafast electrically controlled phase
shifters for amplitude and phase control. It has been shown
that the dielectric permittivity of a ferroelectric can be al-
tered by applying an electric field. Therefore a fast ferroelec-
tric phase shifter controlled by an electric field bias is being
investigated3 to be used for applications in particle accelera-
tors. Ferroelectric materials provide significant benefits for
several applications such as switching and control elements.
These are able to handle high peak and average power while
maintaining a very short response time of less than just few
nanoseconds. According to some estimations1,3 the response
time to an applied external electric field is about 10−11 s for
crystalline and 10−10 s for ceramic compounds. The high
permittivity �over 1000� of ferroelectrics makes them poten-
tial candidates to replace silicon oxide dielectrics as storage
capacitors for memory devices. A solid solution barium-
strontium titanate BST has a high permittivity and a
composition-dependent Curie temperature Tc which varies in
a range of 30–400 K. This strong dependence of the dielec-
tric constant on electric field offers the opportunity to use
ferroelectrics as tunable devices. Ferroelectric based phase
shifters organized in an array have the advantage of being
cheap and consuming a reduced power while continuously
tuning the phase of a high-power microwave signal. This
rapid electrical steering is realized by adjusting the bias volt-
ages on each element. See, for example Refs. 4 and 5, where
the phase shifting elements based on BST thin-film capaci-
tors are discussed. There is a certain advantage in using ele-

ments build on thin ferroelectric films because of their com-
pactness and parameter tunability. The presence of internal
stresses in the thin film ferroelectrics changes their electro-
mechanical and dielectric properties drastically. Because of
this the dielectric permittivity in a thin film is reduced by
about an order of magnitude compared to one for the bulk
media. However choosing the appropriate substrate allows to
adjust the internal stress level and tune the physical proper-
ties of the thin ferroelectric films. Thin films of BST depos-
ited by the sputtering technique are discussed in Refs. 6 and
7 in reference to the production of compact tunable capaci-
tors. These elements are attractive for applications in adap-
tive impedance matching networks and tunable filters. Size
effects in thin ferroelectric films are discussed in Ref. 8. It is
reported that no critical film thickness is required to obtain
polarization switching.

A noteworthy transient effect occurs in ferroelectric ma-
terial subjected to an alternating electric field which causes
polarization switching between two stationary states of the
ferroelectric. The switching process is followed by high-
frequency polarization oscillations around their stationary
states. Basically the polarization dynamics of a ferroelectric
near its steady state can be viewed in terms of a damped
oscillator with an eigenfrequency determined by the material
parameters. An alternating electric field serves as the external
force that pushes the oscillator away from its equilibrium.
The generation of infrared �IR� radiation by means of polar-
ization switching was proposed for ferroelectrics.9 There the
authors estimate the energy radiated using the dipole ap-
proximation.

The study of the transient dynamics of these processes
can help understand how the system parameters can be ad-
justed to provide the required transient behavior. That is im-
portant for devices subjected to sharp/shock periodic or ape-
riodic forces of high frequency. They then spend most of
their time in a transient state, even if the relaxation time is
smaller than the observation period. Transient processes oc-
curring in ferroelectric might become unwanted effects if the
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possible applications require fast switching between polar-
ization states, such as in ferroelectric random access
memory. In opposite they might be required if the polariza-
tion switching is used to produce oscillations that will form
an IR pulse. The polarization relaxation time and oscillation
frequency are important characteristics of this transient be-
havior. The polarization damping constant in ferroelectrics is
on the order of 1010 s−1, as indicated in Ref. 10. The theo-
retical description for an isotropic paraelectric in the frame-
work of the dynamical Landau-Khalatnikov model being in-
vestigated in Refs. 11 and 12 allows to calculate nonlinear
susceptibility coefficients.

Here we discuss an experiment where we observe the po-
larization dynamics in a thin BST film. A similar experiment
studying fast polarization switching was performed earlier by
some of the authors. The method of observation of the po-
larization uses the second harmonic generation in the thin
film of the BST solid solution. It is discussed in Ref. 13,
where preliminary results were presented. Here we have ad-
ditional measurements and reinterpret them using a detailed
theory. The experiment follows a pump-probe procedure.
First we apply a constant field Es and obtain the steady-state-
induced polarization Ps. Then we send in an additional small
electric field pulse to probe the film. In principle, this time-
dependent solution could be described by the theory set up in
Ref. 14 but we chose in this first study to describe the relax-
ation response of the film. For that we set up a scattering
theory formalism. The bound states of the system �E , P� will
then give the response of the film, i.e., the typical oscillation
frequency and the radiative decay time. We identify two
channels of damping, the radiative damping and the inner
damping. From the experimental data we estimate the mag-
nitude of both terms and find that here the inner damping
dominates. There could be other experiments where the con-
trary happens, i.e., the radiative damping may dominate.

II. MODEL OF ELECTROMAGNETIC RESPONSE IN
FERROELECTRIC FILM

The theory of ferroelectric has started to develop in the
1930s. The phase transition theory proposed by Landau15,16

was applied to describe the behavior of the ferroelectric near
a critical point of the phase transition. Following the Landau-
Ginzburg-Devonshire theory the thermodynamic Gibbs po-
tential � in the neighborhood of the critical point can be
represented as a power series of the order parameter, namely,
the polarization P,17–20

� = �0 +
�

2
P2 +

�

4
P4 − EP .

We have considered that the film is made of an isotropic
material for simplicity. Anisotropic effects can be principal
for bulk materials because they could accumulate. This is not
the case for a thin film. The expansion coefficients are
�=a0�T−Tc� and �. Tc is the Curie temperature. In a solid
solution BaxSr1−xTiO3 the Curie temperature depends on the
relative concentration x of barium. The approximate formula
to calculate Tc in BST was proposed by Ref. 21. It reads
Tc=360x+40. Particularly Tc=292 K for x=0.7. This is the

concentration of barium in the thin film investigated in an
experiment on ferroelectric switching.13

We describe an experiment where a thin film of thickness
l is deposited on a dispersionless substrate and is submitted
to an incident electric field as shown in Fig. 1. The optical
properties of the surrounding media can be characterized by
the refractive index n�z�, such that n�z�=1 for z�0 and
n�z�=n�1 for z�0, i.e., in the substrate. The electric field
E�z , t� is governed by the Maxwell equation and the polar-
ization obeys the equation of a damped oscillator driven by
the field �compare to Ref. 14�

�2E

�z2 −
n2

c2

�2E

�t2 =
l

�0c2

�2P

�t2 ��z� ,

�2

�0

�2P

�t2 +
	�2

�0

�P

�t
+ �P + �P3 = Ef�t� , �1�

where Ef�t� is the electric field inside the thin film. The con-
stant � is proportional to the inverse of the Born frequency,
this value will be estimated for BST later. Typically the de-
cay constant 1 / �	�2� is small.19 However we take it into
account for generality.

The electromagnetic wave is incident from the left of a
film located at z=0. Thus the electric fields outside the thin
film E−�z , t� for z�0 and E+�z , t� for z�0 are defined by free
wave equations. The time Fourier images of these fields can
be written as

Ẽ−�z,
� = Aeik1z + Be−ik1z,

Ẽ+�z,
� = Ceik2z.

Here k1=
 /c and k2=
n /c are the wave numbers on the left
and on the right of the thin film, A is the Fourier amplitude of
the incident wave, B is the Fourier amplitude of the reflected
wave, and C is the Fourier amplitude of the transmitted
wave.

According to the boundary conditions at z=0 �Refs. 14

and 22� the electric field Ẽ and its spatial derivative Ẽ,z are
connected by the relations

Ẽ�−��z = 0,
� = Ẽ�+��z = 0,
� ,

FIG. 1. �Color online� Schematics of the experimental setup
where an electric field pulse polarizes a ferroelectric thin film de-
posited on a substrate.
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Ẽ,z
�−��z = 0,
� − Ẽ,z

�+��z = 0,
� =
l
2

c2�0
P�
� ,

where P�
� is the Fourier image of the thin-film polarization.
This leads to the following equations for the Fourier ampli-
tudes of the left and right electric fields

A + B = C, A − B = nC −
il


c�0
P̃�
� .

Hence the amplitude of the transmitted wave C and the am-
plitude of the reflected wave B can be expressed through the
amplitude A of the incident wave and the thin-film polariza-
tion P�
�

C =
2

n + 1
A +

il


c�n + 1��0
P̃�
� , �2�

B =
1 − n

1 + n
A +

il


c�n + 1��0
P̃�
� . �3�

Using the inverse Fourier transform we obtain the amplitude
of the electric field inside the thin film Ef as E+�z , t� at
z=0,22 i.e.,

Ef�t� =
2

1 + n
Ein�t� −

l

c�n + 1��0

�P

�t
,

where Ein�t� is the electric field of the incident wave. Thus
one can find from the second equation of the system in Eq.
�1� that the polarization of the ferroelectric thin film is gov-
erned by the following equation:

�2

�0

�2P

�2t
+ �	�2

�0
+

l

c�n + 1��0
� �P

�t
+ �P + �P3 =

2

1 + n
Ein�t� .

�4�

This expression shows that two relaxation channels exist.
One of them is the ordinary one related with inner friction,
i.e., the 	 term. The second relaxation channel is due to the
radiation process. The variation in the polarization generates
the electromagnetic field outside the film.

The polarization of the thin film evolves according to Eq.
�4� as an oscillator with damping and a forcing that is equal
to Es=2Ein�t� / �1+n�. Furthermore, this equation allows to
consider Ein as a constant electric field, i.e., a constant volt-
age. In this case Es=Vs / l, where Vs is the applied voltage.

A. Relaxation to a steady-state polarization

In the absence of an external electric field the ferroelectric
possesses two equilibrium states, each corresponding to dif-
ferent polarities. In the paraelectric phase there is only one
equilibrium corresponding to an unpolarized state. The ex-
periment under consideration was performed at room tem-
perature which is above the Curie temperature for BST so
that the sample is in the paraelectric state. However there is
another way to change the polarization state. This can be
induced by applying an external field or a stress. In this
experiment we chose to do the former. The induced steady-
state polarization Ps is defined as the fixed point of the Eq.

�1�, where we assume that the electric field Ef�t�=Es is con-
stant and the polarization P= Ps are time independent. We get

�Ps + �Ps
3 = Es. �5�

We assume the solution of Eq. �1� to be of the form

E = Es + �E, P = Ps + �P , �6�

where �E and �P are small compared, respectively, to Es Ps.
Plugging this into the Eq. �1� we get the linearized equations
around the stationary solution �Es , Ps�

n2

c2

�2�E

�t2 −
�2�E

�z2 = −
l

�0c2

�2�P

�t2 ��z� ,

�2

�0

�2�P

�t2 +
	�2

�0

��P

�t
+ �� + 3�Ps

2��P = �E�t� . �7�

B. Scattering of linear waves by the thin film

We now proceed to solve the linearized Eq. �7� by using a
scattering theory formalism. We separate time and space by
assuming a periodic solution

�E = e�z�e−i
t, �P = pe−i
t. �8�

We get

n2k2e +
�2e

�z2 = −
l

�0
k2��z�p ,

��2 − i	�2
 − �2
2�p = �0e�0� , �9�

where the wave number k=
 /c and where we introduced

�2 = �0�� + 3�Ps
2� . �10�

In the scattering we assume the electromagnetic wave to
be incident from the left of the film located at z=0. We then
have

e = eikz + Re−ikz, z � 0; e = Teiknz, z � 0, �11�

where R is the amplitude of the reflected wave and T the
amplitude of the transmitted wave. These expressions are
related to the A , B , C parameters of the previous section
through the relations R=B /A, T=C /A. We have the follow-
ing interface conditions at z=0:14,22

e�0−� = e�0+�, − �ez�0−
0+

= k2 l

�0
p . �12�

They imply

1 + R = T, nT − �1 − R� = − ik
l

�0
p .

Using the second relation of Eq. �9� to obtain p we get the
transmission coefficient T

T =
2c��2 − i	�2
 − �2
2�

c�n + 1���2 − i	�2
 − �2
2� + il

. �13�

The refraction coefficient is
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R =
c�1 − n���2 − i	�2
 − �2
2� − il


c�1 + n���2 − i	�2
 − �2
2� + il

. �14�

The bound states are the poles of the reflexion and transmis-
sion coefficients. Their existence indicates that the system
has resonant modes that can be excited by an incoming
wave. The real part of the bound states is the oscillation
frequency and the imaginary part is the inverse of the decay
time of the mode.

The poles of R , T are given by

c�n + 1���2 − i	�2
 − �2
2� + il
 = 0,

which is the second degree equation


2�2 − i
� l

�n + 1�c
− 	�2� − �2 = 0, �15�

whose roots are


 =
i

2
� l

�n + 1�c
− 	� ���2

�2 −
1

4
� l

�n + 1�c
− 	�2

.

�16�

The imaginary part and real part of 
=
r+ i
i give, respec-
tively, the decay time Tdec and the oscillation period Tosc

Tdec =
1


i
, Tosc =

2


r
. �17�

We will estimate these parameters for the experiment in the
next section.

C. Green’s function solution of the linearized equation

The linearized equation

�2

�0

�2�P

�t2 +
�2	

�0

��P

�t
+ �� + 3�Ps

2��P = �E�t�

can be solved to obtain the polarization response �P�t� to a
give incoming electric field �E�t�. For that we introduce the
Green’s function G�t− t0� which satisfies

�2�2G

�t2 + �2	
�G

�t
+ �2G = �0��t − t0� . �18�

Using the Laplace transform

Ĝ�s� 	 

0

�

e−stG�t�dt

and assuming that G�0�=0 and �G /�t�0�=0 we obtain

Ĝ�s� =
�0e−st0

�2s2 − �2	s + �2 . �19�

To get the inverse Laplace transform one expands this ratio-
nal function as

Ĝ�s� =
�0

2�s1 − s2�� e−st0

s − s1
−

e−st0

s − s2
� ,

where s1, s2 are the roots of the denominator of Eq. �19�.
This yields the Green’s function

G�t − t0� =
�0

2�s1 − s2�
�es1�t−t0� − es1�t−t0��, t � t0,

G�t − t0� = 0, t � t0.

The roots are complex conjugate s1=
i+ i
r, s2=
i− i
r
so we obtain the final result

G�t − t0� = e
it
sin�
r�t − t0��

2
r
, t � t0,

G�t − t0� = 0 t � t0. �20�

The polarization response �P�t� to a given perturbation of
the electric field �E�t� is the convolution integral

�P�t� = 

−�

t

G�t − t0��E�t0�dt0. �21�

D. Induced polarization caused by a short electric pulse

Now let us consider an alternative method to investigate
the polarization response. Suppose that a ferroelectric film is
in a polarized state Ps caused by a constant electric field Es.
At certain moment we send in a short electric pulse so the
polarization of the film changes during a short time period.
After that the polarization relaxes to the steady-state position
Ps. If the electric pulse is sufficiently short, i.e., close to a “�
function” then the polarization response will follow the
Green’s function in Eq. �20�. We term this action
“�-functionlike pushing” the nonequilibrium polarization.

The linearization of the equation for the polarization in
Eq. �4� near the steady state Ps assuming P= Ps+ p with the
condition p� Ps results in the equation for the Green’s func-
tion in Eq. �18�. Let us suppose that the extremely short
electric pulse acts at t=0. Then we can conclude that the
evolution of p�t� after t=0 is described by

p�t�  e
it
sin�
rt�

2
r
.

Hence the polarization decay rate is defined by the imaginary
part of the complex frequency in Eq. �16�, 
i and the corre-
sponding time for the polarization to attain the equilibrium is

Tdec = 1/
i.

The real part of the frequency in Eq. �16� corresponds to
oscillations of the polarization as it is approaches the steady-
state value. Here we recover the results obtained using the
scattering formalism.

III. EXPERIMENTAL RESULTS

The experiment was performed using the nonlinear opti-
cal stroboscopic technique as in Ref. 13. For the second har-
monic �SH� generation, the radiation of a titanium-sapphire
laser �MaiTai, New-Port-SpectraPhysics� was used with a
pulse duration of 100 fs, a wavelength of 780 nm, a repeti-
tion rate of 100 MHz, and an average power of 100 W. The
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experiment was performed at room temperature. The 70-nm-
thick Ba0.7Sr0.3TiO3 films were deposited onto a MgO sub-
strate by rf sputtering. For such a composition, the Curie
temperature equals Tc=20 C. However for thin films the
phase transition is blurred around this value and this is con-
firmed by the presence of a narrow hysteresis above Tc.

13 A
voltage pulse of duration about 25 ns, produced by an Avtech
pulse generator, was applied to the copper contacts on the
BST film. The polarization response of the ferroelectric film
was measured as the coherent SH intensity in the
experiment.23

Figures 2 and 3 show the polarization response as a func-
tion of time of the BST thin film to electric pulses having the
same amplitudes and opposite polarities. The left panels
show the incoming electric field pulses as a function of time
and the right panels show the SH intensity �proportional to
the square of the polarization� as a function of time. In Fig. 2
the electric field pulse �left panel in the figure� is realized by
a rapid spiking to a zero value from a constant negative
voltage background with return to the same constant nega-
tive value. For Fig. 3 the electric pulse �left panel at the
figure� drops from its constant positive value to zero and
returns to the constant. In both measurements the spiking
pulse will be called the ‘zero’ pulse. The pulse profile is
intended to have a narrow bell shape, however because of
certain setup drawbacks a low-amplitude tail appears. In the
right panels of Figs. 2 and 3 it can be seen that the polariza-
tion oscillates long after the “zero” electric pulse has passed
through the thin film. Then the eigenfrequency of the polar-
ized thin film can be determined.

In both pictures the polarization oscillates around its sta-
tionary values �defined by the constant background electric
field� with very close oscillations periods, about 60 ns. This
agrees with the relation in Eq. �22� in the limit when the

second term can be neglected in the square root because �
only depends on the amplitude �Es�.

The next Fig. 4 shows the polarization dynamics when
there is no constant electric field Es after a delta function
such as electric pulse of negative polarity �shown in the left
panel� passes through the film. This type of electric pulse is
the analog of a “normal pulse” studied experimentally in
Ref. 13. When the film is not polarized the SH cannot be
generated so that its intensity is about zero. The SH signal
from the perturbed unpolarized state is a few times smaller
than the one for the previous experiments. There the steady
polarized state of the thin film was studied by a zero pulse.
There are almost no polarization oscillations when perturb-
ing a nonpolarized thin film. Again this agrees with the esti-
mate in Eq. �22�.

Discussion of the experimental results

There is a relatively broad range of experimentally ob-
tained values of the Landau coefficients in BST solid solu-
tions. The numbers vary with the fabrication method. The
Landau coefficients found by24 for a BST solid solution
Ba0.7Sr0.3TiO3 in SI units are presented in Table I. In the
experiment performed the film thickness is l=70 nm �as in
Ref. 13�. We assume that the substrate refraction index is
n=1.5. These parameters enable to calculate the frequency
�. For a normal pulse the applied voltage Vs=0 so Es=0 and
Ps=0. This gives �2=�0��2�10−5. In the presence of
an electric field Es=Vs / l where Vs=10 V we have
Es�108 V /m so that from Eq. �5� we get Ps�0.79 C /m2.
This gives �2=�0��1.8�10−3.

First let us estimate the term l��n+1�c�−1 in the formula
�16�. We have l��n+1�c�−1�10−16 which is very small so
that this radiative damping can be completely neglected for
this particular experimental situation. From the experimental
data it can be seen that the polarization response for a
voltage Vs=0 is qualitatively different from the one for
Vs=10 volts. In particular, it has a smaller decay time and
practically no oscillations. Let us estimate the decay time
Tdec from Eq. �16�. We have

FIG. 2. Plots of a positive “zero” electric pulse voltage as a
function of time �left panel� and the subsequent polarization oscil-
lations of the film as a function of time �right panel�. The constant
field Es is negative.

FIG. 3. Plots of a negative “zero” electric pulse voltage and the
subsequent polarization oscillations of the film as in Fig. 2 except
that the constant field Es is positive.

FIG. 4. Plots of a “normal” electric pulse voltage and the sub-
sequent polarization oscillations.

TABLE I. Material parameters for Ba0.7Sr0.3TiO3.

Tc

�C�
�

�m/F�
�

�m5 /C2F�

34 2.2�106 2.52�108
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Tdec = 2/	

if ��2 /�2−	2 /4��0, otherwise

Tdec = �	

2
+�	2

4
−

�2

�2 �−1

.

This decay time is shown in Table II for different values of
the free parameters �� ,	�. Clearly if ��2 /�2−	2 /4��0 there
will be oscillations in the polarization. Comparing the esti-
mates of the table with the result shown in Fig. 4 indicates
that 	�107 s−1. This agrees with the value obtained in a
previous study by the authors.23

Let us now compare the oscillation period obtained for
the nonzero pulse Vs=10 volts with the estimate in Eq. �16�.
We have

Tosc = 2���2

�2 −
	2

4
�−1

. �22�

This value is computed for different values of 	 and � and
reported in Table III. The zero entries correspond to the situ-
ation where �2 /�2−	2 /4�0. As can be seen the values clos-
est to what is observed in the experimental plots Figs. 2 and
3 are �=10−10 s and 	=107. This value of the oscillation
time � agrees with the one that can be computed using the
speed of sound cs=5103 m /s in the material and the film
thickness l. We get �= l /cs�10−11 s. The estimate for the
bulk material using the Newton equation describing the lat-
tice oscillations �hf

2 �M�0 / �Ne2��10−26 s−2, where M is the

atomic mass of BST gives ��10−13 s which is much too
small.

We have used the expression �21� to compute the polar-
ization response of the system to a given perturbation �E of
the electric field. We assume a Gaussian �E

�E�t� = exp�−
t2

2we
� �23�

and normalize times by T=10 ns. We chose 	=107 s−1,
�=10−10 s. In the normalized units we have 	=0.1, we=1.
The normalized frequency 
=0.45 for the zero pulse and

=4.5 for the normal pulse. We calculated the polarization
response by numerical integration using the trapeze method.
To compare with the experimental data we computed �P2.
The results are presented in Fig. 5 for a normal pulse
�Es=0� in the left panel and for a zero pulse in the right
panel. One can see on the left side of the plots the first
response of the polarization. We have omitted it because it is
the forced response due to the probing pulse �E. We only
present the subsequent free evolution of �P. For Vs=0 the
polarization decays with few oscillations. For Vs=10 V the
polarization oscillates much longer. This is in quantitative
agreement with the experimental plots presented above.

Finally let us consider the important issue of how much
heat the sample receives during its irradiation by the laser.
We assume that the film is a dielectric, thus the Joule heat is
negligible. Our model allows to predict how much heat is
absorbed by the dielectric material. The permittivity ��
� has
an imaginary part ���
� which depends on the frequency 
.
This is due to the Causality principle. The heat absorbed per
unit volume is defined by the following formula:

q�
� =



8
���
��e�2,

where 
 is the carrier frequency of the electromagnetic wave
and e is the amplitude of this wave. We consider a harmonic
wave. We can find ���
� in the framework of our model.
From Eq. �9� we can obtain the polarization of unit volume p
as

p =
�0e�0�

�2 − �2
2 − i�2	

.

The polarization of matter in the volume lS �S being the
square section of the beam� is plS. Using the expression
D=�0e�0�+ plS=�0�e�0�, one can find the �permittivity�

��
� as

TABLE II. The decay time Tdec as a function of the parameters
�� ,	� for the zero pulse Vs=0 V.

	=106

�s−1� 107 108 109

�=10−6 �s� 10−6 10−7 10−8 10−9

10−7 10−6 10−7 10−8 10−9

10−8 1.4�10−6 10−7 10−8 10−9

10−9 2�10−6 1.4�10−7 10−8 10−9

10−10 2�10−6 2�10−7 1.4�10−8 10−9

10−11 2�10−6 2�10−7 2�10−8 1.4�10−9

10−12 2�10−6 2�10−7 2�10−7 2�10−9

TABLE III. The oscillation period Tosc as a function of the
parameters �� ,	� for the nonzero pulse Vs=10 V.

	=106

�s−1� 107 108 109

�=10−6 �s� 0 0 0 0

10−7 1.5�10−5 0 0 0

10−8 9.6�10−7 1.5�10−6 0 0

10−9 9.6�10−8 9.6�10−8 1.5�10−7 0

10−10 9.6�10−9 9.6�10−9 9.6�10−9 1.5�10−8

10−11 9.6�10−10 9.6�10−10 9.6�10−10 9.6�10−10

10−12 9.6�10−11 9.6�10−11 9.6�10−11 9.6�10−11
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FIG. 5. The polarization response of the film for a normal pulse
�Es=0� �left panel� and for a zero pulse �right panel�.
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��
� = 1 +
lS

�2 − �2
2 − i�2	

. �24�

This formula gives the imaginary part of ��
�

���
� =
lS��2	
�

��2 − �2
2�2 + ��2	
�2 .

Assuming the following values of the parameters:

�2 = 1.8 � 10−3, 	 = 107 s−1, � = 10−10 s, l = 7

� 10−8 m,

we have

���
� �
7 � 10−21S


�1.8 � 10−3 − 10−20
2�2 + 10−26
2 .

Let the frequency 
 correspond to the light diapason, i.e.,

=1015 s−1. In this case ���
��7�10−26S. The corre-
sponding heat is equal to

q � 0.3 � 10−11S�e0�2.

We should take a very small intensity of probe wave in the
case of the spectroscopic �scattering� technique. The trans-
verse section S is about 10−5 m2. Thus in this case the heat-
ing effect is extremely small. In the second-harmonic gen-
eration �SHG� experiment �e0�210–102 so q�1 in this
case too. This confirms the noninvasive nature of the the
SHG technique because the resonant frequency of the polar-
ization response is much smaller than the laser frequency. If
we choose a laser frequency that is close to the resonant
frequency 
=� /� then ���
� is given by

���
� �
lS

	��
.

Using the same parameters as above we can estimate this
expression as ���
��4�10−2S The heat q=106S�e0�2 which
is significant even for fairly small fields e0. The SHG tech-
nique now strongly perturbs the sample.

IV. CONCLUSION

We analyzed the polarization oscillations occurring in a
thin ferroelectric film as a short electric pulse crosses it. We
consider that the ferroelectric is in the paraelectric phase

�high temperature�. As in a pump probe experiment the film
is initially in a static polarization state Ps induced by a con-
stant voltage Vs. Using the Landau-Ginzburg-Devonshire
theory we computed this static polarization and the subse-
quent oscillations of the polarization induced by a short volt-
age pulse. These were analyzed using a scattering theory
formalism and a Green’s function approach. Two channels of
dissipation were identified, a radiative damping and an in-
trinsic damping.

This theory was applied to explain the experimental time
evolution of the polarization for a thin ferroelectric film of
BST. The polarization is estimated indirectly through second
harmonic generation. For this experimental situation we
show that the radiative damping can be neglected and only
the intrinsic damping should be considered. From a compari-
son of our model to the experimental plots we estimated the
important parameters � the response time and 	 the relax-
ation coefficient. Using these values our theoretical estimates
of the decay time and of the oscillation period agree well
with the observations. In particular, for a normal pulse for
which Vs=0 the damping dominates and we only see a few
oscillations of the polarization. On the contrary for a zero
pulse for which Vs=10 V the damping time is longer com-
pared with the oscillation period. Here we obtain many os-
cillations of the polarization.

Although the radiative damping appears as artificial in
this particular high-temperature situation, at low-temperature
phonons become frozen and the radiative damping may be-
come predominant. The model can be further elaborated by
including the spatial inhomogeneity of the thin film, the de-
polarization effects of the boundaries, and taking into ac-
count the internal stresses of the film. Also the dynamics of
the polarization of a thin-film multilayered structure can be
investigated by generalizing the model.
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